

SELFOC® MICRO LENS(SML), Standard

There are two categories of lenses, both distinguished by a different numerical aperture: SLW (wide) and SLH (high). Each NA type is appropriate for different applications and exhibits different alignment sensitivities.

While the numerical aperture is a maximum at the center of the lens aperture, the actual NA is a function of the ray parameters (height and angle) for each ray that strikes the lens' Surface (see technical note for detail).

C18 is optimized for Single Mode Fiber application to have better coupling efficiency. So, when you consider the usage of SMF, C18 have better Insertion Loss performance than W18.

Applications:

- Laser diode-to-fiber coupling
- Fiber-to-detector coupling
- Fiber-to-fiber coupling
- Focusing and collimating

Optical Parameters:

Lens Type		W10	W18	W20	W30	W40	C18	H18
Diameter		Ф1.0mm	Ф1.8mm	Ф2.0mm	Ф3.0mm	Ф4.0mm	Ф1.8mm	Ф1.8mm
Wavelength	NA (2θ)	0.46 (55°)				0.60 (74°)		
630nm	N 0	1.607			1.6	35	-	1.658
	√A	0.608	0.339	0.304	0.207	0.154	-	0.430
	Z @0.25P	2.58mm	4.63mm	5.17mm	7.60mm	10.24mm	-	3.65mm
830nm	N 0	1.599			1.625		-	1.646
	√A	0.601	0.332	0.298	0.203	0.151	-	0.423
	Z @0.25P	2.61mm	4.73mm	5.27mm	7.75mm	10.43mm	-	3.71mm
1310nm	N 0	1.592			1.617		1.592	1.636
	√A	0.597	0.327	0.295	0.199	0.148	0.324	0.418
	Z @0.25P	2.63mm	4.80mm	5.32mm	7.87mm	10.59mm	4.85mm	3.76mm
1550nm	No	1.590			1.615		1.590	1.634
	√A	0.596	0.326	0.294	0.199	0.148	0.323	0.417
	Z @0.25P	2.64mm	4.82mm	5.34mm	7.89mm	10.62mm	4.86mm	3.77mm

NA: Calculated value on axis

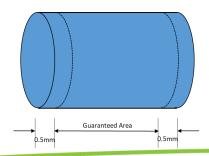
No: On-axis refractive index / not garanteed \sqrt{A} : Index gradient constant nominal vaue

Z: Lens length with 0.25 pitch at lens center, nominal value

Common Characteristics:

ltem	Specification	Notes		
Transmittance	89% min.	Wavelength : 380-2000nm, 5mm, uncoated		
Polarization Preservation	0.99	Non-stressed state		
Effective diameter	Approx. 60-70% of lens Diameter			
Index Gradient Constant	±2.5% max.	Between ion exchange batches		
√A Tolerance	±0.75% max.	Within same ion exchange batch		
Lens Diameter Tolerance	+0.005/-0.01mm	For all SMLs except SLW3.0 and 4.0		
Lens Diameter Tolerance	+0/-0.02mm	For SLW-3.0 and SLW-4.0		
Lens Length Tolerance	+0/-0.04mm	Machining and polishing tolerance		
End Facet Perpendicularity	6 mrad. max.			
Ellipticity	3um	Dmax-Dmin		
Glass Material	Oxide Glass			
Young's Modulus	6000 - 8000 Kgf/mm ²	Typical		
Thermal Expansion Coefficient	10 x 10 ^{-6/°C}	Typical		

Surface Quality (inspected at x20 mag.) :

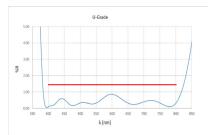

Item	Specification Specification				
Pinholes / Particles	Defects greater than 30um in deameter are not allowed.				
	Defects smaller than 10um in diameter are allowed.				
	Up to three defects with diameter between 10um and 30um are allowed.				
	Scratches wider than 5um are not allowed.				
Scratches	Scratches narrower than 2u are allowed.				
	Up to three scratches with 5um max. width and 200um max. length are allowed.				
Chippings	Chippings are not allowed within the concentric area of 90% of the lens diameter.				

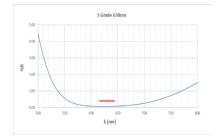
Options:

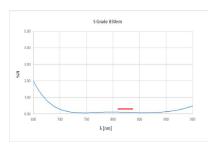
Metallization

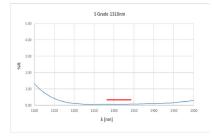
Metallization of the side surface allows the user to solder the lens into a housing. The purpose is to create a hermetic seal and to provide greater bonding strength than epoxy bonding. We have 2types of Metallization, one is M-Meta that is good for Pb/SN solder(relatively old solder) and other is U-Meta that is good for Au/Sn solder(high temperature).

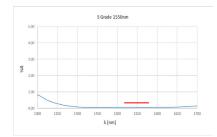
Item / Type	M-Type	U-Type		
Application	Pb/Sn Solder	Au/Sn Solder		
Configuration	Cr : 500 <u>+</u> 150Å Pt : 500 <u>+</u> 150Å Au : 6000 <u>+</u> 1000Å	Ti : 1000 <u>+</u> 200Å Pt : 1500 <u>+</u> 200Å Au : 5000 <u>+</u> 1000Å		
Max. Solder Temperature	230°C x 10sec	380°C x 120sec (in Nitrogen)		

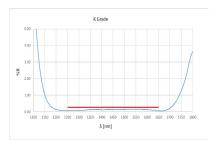


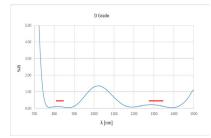

AR Coating

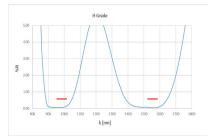

AR coating reduce the amount of light lost due to Fresnel reflection at the lens surfaces. They also help to protect the lens surfaces from humidity, chemical reaction, and physical damage. Five grades of coating(S, K, U, H, D) are available, each with its unique characteristics. The coating are optimized for specific wavelength(s).

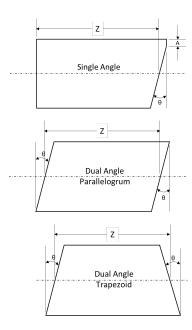

Item / Coating Type	None-Coated	S-Grade		U-Grade	K-Grade	D-Grade	H-Grade
Wavelength range	-	630nm <u>+</u> 15nm 830nm <u>+</u> 15nm	_	600 <u>+</u> 200nm	1400 <u>+</u> 200nm	830 <u>+</u> 15nm & 1310 <u>+</u> 30nm	980 <u>+</u> 30nm & 1550 <u>+</u> 30nm
Maximum Refection per surface	4 ~ 6%	0.25%		1.50%	0.20%	0.50%	
Coating Structure	Multilayer Metal Oxide						
Maximum Temperature	350°C	200°C x1000hrs					
Maximum Humidity and Reliability	Not recommended for high humidity	85°C/85%RH 1000hrs					


Typical AR Spectrum



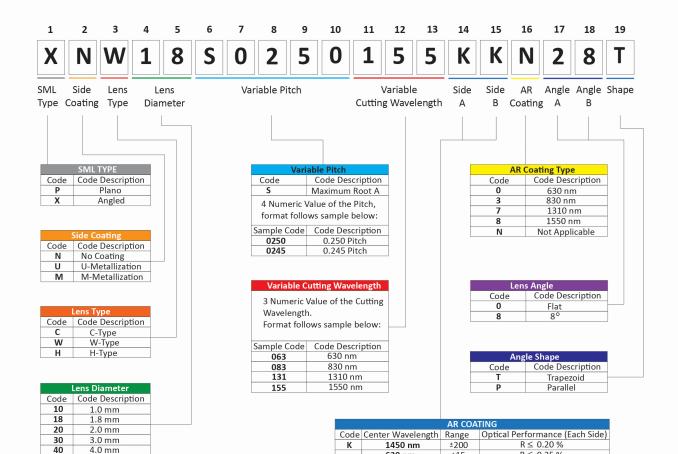






Angled Facet

Angling one or more of the lens facets can effectively reduce back reflection from the surface(s). This option is available for all SELFOC Microlens (SML) with OD of 1.0, 1.8 and 2.0mm. There are two types of angled facets available. With the Single-Angle option, one lens facet is tilted while the other remains perpendicular to the optical axis. With the Double-Angle Option, we can offer 'Parallelogram' that is both facets are tilted identically such that they remain parallel to each other and 'Trapezoid' that is


. Back reflection can be further minimized with the use of AR coating. $\,$

Ordering Guide:

630 nm

830 nm

1310 nm

1550 nm

830/1310 nm

980/1550 nm

600 nm

S

D

н

U

Р

N

±15

±15

±40

±40

±30

±200

Passivation Coating

NON COAT

±15/±30

R ≤ 0.25 % R ≤ 0.25 %

R ≤ 0.25 %

R ≤ 0.25 %

R ≤ 0.50 %

R ≤ 0.50 %

 $R \leq 1.50 \%$